{"id":9455,"date":"2022-01-14T16:23:09","date_gmt":"2022-01-14T10:53:09","guid":{"rendered":"https:\/\/mathemerize.com\/?p=9455"},"modified":"2022-01-14T16:23:11","modified_gmt":"2022-01-14T10:53:11","slug":"what-is-the-general-solution-of-tan-theta-tan-alpha","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/what-is-the-general-solution-of-tan-theta-tan-alpha\/","title":{"rendered":"What is the General Solution of \\(tan \\theta\\) = \\(tan \\alpha\\) ?"},"content":{"rendered":"
The general solution of \\(tan \\theta\\) = \\(tan \\alpha\\)<\/strong> is given by \\(\\theta\\) = \\(n\\pi + \\alpha\\), n \\(\\in\\) Z.<\/strong><\/p>\n Proof :<\/strong><\/p>\n We have, \\(tan \\theta\\) = \\(tan \\alpha\\)<\/p>\n \\(\\implies\\) \\(sin \\theta\\over cos \\theta\\) = \\(sin \\alpha\\over cos \\alpha\\)<\/p>\n \\(\\implies\\) \\(sin \\theta cos \\alpha\\) – \\(cos \\theta sin \\alpha\\) = 0<\/p>\n \\(\\implies\\) \\(sin (\\theta – \\alpha)\\) = 0<\/p>\n \\(\\implies\\) \\(\\theta – \\alpha\\) = \\(n\\pi\\), n \\(\\in\\) Z<\/p>\n \\(\\implies\\) \\(\\theta\\) = \\(n\\pi + \\alpha\\), n \\(\\in\\) Z<\/p>\n Remark : <\/strong>Since \\(tan \\theta\\) = \\(tan \\alpha\\) is equivalent to \\(cot \\theta\\) = \\(cot \\alpha\\). So, general solutions of \\(cot \\theta\\) = \\(cot \\alpha\\) and \\(tan \\theta\\) = \\(tan \\alpha\\) are same.<\/p>\n","protected":false},"excerpt":{"rendered":" Solution : The general solution of \\(tan \\theta\\) = \\(tan \\alpha\\) is given by \\(\\theta\\) = \\(n\\pi + \\alpha\\), n \\(\\in\\) Z. Proof : We have, \\(tan \\theta\\) = \\(tan \\alpha\\) \\(\\implies\\) \\(sin \\theta\\over cos \\theta\\) = \\(sin \\alpha\\over cos \\alpha\\) \\(\\implies\\) \\(sin \\theta cos \\alpha\\) – \\(cos \\theta sin \\alpha\\) = 0 \\(\\implies\\) \\(sin …<\/p>\n