{"id":9715,"date":"2022-01-25T23:59:57","date_gmt":"2022-01-25T18:29:57","guid":{"rendered":"https:\/\/mathemerize.com\/?p=9715"},"modified":"2022-01-25T23:59:58","modified_gmt":"2022-01-25T18:29:58","slug":"smallest-integer-function","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/smallest-integer-function\/","title":{"rendered":"Smallest Integer Function (Ceiling Function) – Graph, Domain and Range"},"content":{"rendered":"
Here you will learn what is smallest integer function definition, graph and its domain and range with examples.<\/p>\n
Let’s begin –<\/p>\n
Definition<\/strong> : For any real number x, we use the symbol \\(\\lceil x \\rceil\\) to denote the smallest integer greater than or equal to x.<\/p>\n For example<\/strong><\/span>, \\(\\lceil 4.7 \\rceil\\) = 5, \\(\\lceil -7.2 \\rceil\\) = -7, \\(\\lceil 5 \\rceil\\) = 5, \\(\\lceil 0.75 \\rceil\\) = 1 etc.<\/p>\n The function f : R \\(\\rightarrow\\) R defined by f(x) = \\(\\lceil x \\rceil\\) for all x \\(\\in\\) R is callled the smallest integer function or the ceiling function.<\/p><\/blockquote>\n It is also a step function.<\/p>\n