{"id":9917,"date":"2022-02-02T21:59:24","date_gmt":"2022-02-02T16:29:24","guid":{"rendered":"https:\/\/mathemerize.com\/?p=9917"},"modified":"2022-02-02T21:59:28","modified_gmt":"2022-02-02T16:29:28","slug":"parametric-equation-of-all-forms-of-parabola","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/parametric-equation-of-all-forms-of-parabola\/","title":{"rendered":"Parametric Equation of all Forms of Parabola"},"content":{"rendered":"
Here you will learn what is the parametric equation of all forms of parabola and their parametric coordinates.<\/p>\n
Let’s begin –<\/p>\n
The parametric equation is x = \\(at^2\\) & y = 2at.<\/p>\n
And parametric coordinates are (\\(at^2\\), 2at).<\/p><\/blockquote>\n
(ii) For the parabola \\(y^2\\) = -4ax :<\/strong><\/h4>\n
The parametric equation is x = \\(-at^2\\) & y = 2at.<\/p>\n
And parametric coordinates are (\\(-at^2\\), 2at).<\/p><\/blockquote>\n
(iii) For the parabola \\(x^2\\) = 4ay :<\/strong><\/h4>\n
The parametric equation is x = 2at & y = \\(at^2\\).<\/p>\n
And parametric coordinates are (2at, \\(at^2\\)).<\/p><\/blockquote>\n