1). Obtain the problem, say, \\(\\displaystyle{\\lim_{x \\to a}}\\) \\(f(x)\\over g(x)\\), where \\(\\displaystyle{\\lim_{x \\to a}}\\) f(x) = 0 and \\(\\displaystyle{\\lim_{x \\to a}}\\) g(x) = 0.<\/p>\n
2). Factorize f(x) and g(x).<\/p>\n
3). Cancel out the common factor.<\/p>\n
4). Use direct substitution method to obtain the limit.<\/p><\/blockquote>\n
Example<\/strong><\/span> : Evaluate : \\(\\displaystyle{\\lim_{x \\to 2}}\\) \\(x^2 – 5x + 6\\over x^2 – 4\\).<\/p>\nSolution<\/strong><\/span> : When x = 2 the expression \\(x^2 – 5x + 6\\over x^2 – 4\\) assumes the indeterminate form \\(0\\over 0\\).<\/p>\nTherefore, (x – 2) is a common factor in numerator and denominator.<\/p>\n
Factorising the numerator and denominator, we have<\/p>\n
\\(\\displaystyle{\\lim_{x \\to 2}}\\) \\(x^2 – 5x + 6\\over x^2 – 4\\) = \\(\\displaystyle{\\lim_{x \\to 2}}\\) \\((x – 2)(x – 3)\\over (x + 2)(x – 2)\\)<\/p>\n
= \\(\\displaystyle{\\lim_{x \\to 2}}\\) \\(x – 3\\over x + 2\\) = \\(2 – 3\\over 2 + 2\\) = \\(-1\\over 4\\)<\/p>\n","protected":false},"excerpt":{"rendered":"
Here you will learn what is the factorisation method to solve limits with examples. Let’s begin – Factorisation Method to Solve Limits Consider the following limit : \\(\\displaystyle{\\lim_{x \\to a}}\\) \\(f(x)\\over g(x)\\) If by substituting x = a, \\(f(x)\\over g(x)\\), reduces to the form \\(0\\over 0\\), then (x – a) is a factor of f(x) …<\/p>\n
Factorisation Method to Solve Limits<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[19],"tags":[],"yoast_head":"\nFactorisation Method to Solve Limits - Mathemerize<\/title>\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\t \n\t \n\t \n