{"id":9953,"date":"2022-02-05T03:15:37","date_gmt":"2022-02-04T21:45:37","guid":{"rendered":"https:\/\/mathemerize.com\/?p=9953"},"modified":"2022-02-05T03:15:40","modified_gmt":"2022-02-04T21:45:40","slug":"mean-deviation-about-mean-and-median-formula-and-examples","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/mean-deviation-about-mean-and-median-formula-and-examples\/","title":{"rendered":"Mean Deviation About Mean and Median – Formula and Examples"},"content":{"rendered":"
Here you will learn what is the mean deviation formula with examples.<\/p>\n
Let’s begin – <\/p>\n
(i) For Ungrouped distribution :<\/strong><\/p>\n Definition<\/strong> : If \\(x_1\\), \\(x_2\\), ….. , \\(x_n\\) are n values of a variable X, then the mean deviation from an average A (median or arithmetic mean<\/strong>) is given by<\/p>\n Mean Deviation (M.D) = \\({\\sum_{i=1}^{n}{|x_i – A|}}\\over n\\)<\/p>\n M.D = \\({\\sum{d_i}}\\over n\\), where \\(d_i\\) = \\(x_i\\) – A<\/p>\n<\/blockquote>\n\n\n Example : <\/span>Calculate the mean deviation about median from the following data : 340, 150, 210, 240, 300, 310, 320<\/p>\n Solution : <\/span>Arranging the observations in ascending order of magnitude, we have 150, 210, 240, 300, 310, 320, 340. <\/p>\n \\(\\therefore\\) Mean Deviation (M.D.) = \\({\\sum{d_i}}\\over n\\) = \\(370\\over 7\\) = 52.8\n <\/p>\n\n\n\n
\nClearly, the middle observation is 300. So, median is 300.\n <\/p>\n \n
\n \\(x_i\\)<\/td>\n \\(|d_i|\\) = \\(|x_i – 300|\\)<\/td>\n <\/tr>\n \n 340<\/td>\n 40<\/td>\n <\/tr>\n \n 150<\/td>\n 150<\/td>\n <\/tr>\n \n 210<\/td>\n 90<\/td>\n <\/tr>\n \n 240<\/td>\n 60<\/td>\n <\/tr>\n \n 300<\/td>\n 0<\/td>\n <\/tr>\n \n 310<\/td>\n 10<\/td>\n <\/tr>\n \n 320<\/td>\n 20<\/td>\n <\/tr>\n \n Total<\/td>\n \\(d_i\\) = 370<\/td>\n <\/tr>\n <\/tbody><\/table>